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A free neutrino source!

- The SNS at Oak Ridge National Lab
- Neutrino source properties
Supernova-related cross-sections
- Supernova physics
- Supernova nheutrino detection
The Nu-SNS project
- Site and collaboration
- Proposed detectors
Other possible physics topics
- Coherent NC elastic scattering
Progress and Prospects



Spallation Neutron Source
at Oak Ridge National Lab, Tennessee
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1$B facility for neutron science: most intense pulsed neutron
beams in the world for chemistry, materials science,
engineering, structural biology...



Proton linear
accelerator,
initial operation
at 1.0 GeV;
upgrade to

1.3 GeV planned

Accumulator ring,

400 ns pulse width

Proton
beam
bombards
liquid Hg
target

24 uC/pulse at 60 Hz = 1.4 MW power




SNS Status and Schedule

- beam construction basically complete
(neutron instruments still under construction)
- first beam in 2006, up to 10 kW

- attained 100 kW in April 2007
- continuing to ramp up, 175 kW in Sept?

- full power in 2009
- possible eventual upgrade to 2-5 MW (20127?)
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Neutrinos are a free by-product! ~0-13 perflavor

per proton
In addition to
kicking out Socas-
neutrons, protons 0.03;— L (deayed
on target create oozs " (PrOmPY
copious pions:
n get captured;
- slow and o00sf
decayatreSt o R
Neutrino energy (MeV)

1T+ N U+ @ 2-body decay: monochromatic 29.9 MeV vV,
PROMPT

“+ ot @ @ 3-body decay: range of energies
between 0 and mu/2

DELAYED (2.2 ps)



More detailed calculation of the spectra
F. Avighone and Y. Efremenko, J. Phys. G: 29 (2003) 2615-2628
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Time structure of the source
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Previous neutrino experiments at
stopped-pion neutrino sources
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Comparison of stopped-pion neutrino sources

LANSCE ISIS SNS JSNS
Location USA (LANL) UK (RAL) | US (ORNL) Japan (J-PARC)
Proton energy 0.8 GeV 0.8 GeV 1 (1.3) GeV 3 GeV
Beamcurrent 70,4  02mA | 1.1mA 0.33 mA
Time structure Two 200 ns

bunches 380 ns

Continuous separated FWHM 1us
by 300 ns
Repetition rate N/A 50 Hz 60 Hz 25 Hz
Power 56 kW 160 kW >1 MW 1 MW
Target Water-
Various cooled Mercury Mercury
tantalum

a

-very high intensity v's
-~below K threshold
-very little DIF

-harrow pulses




What physics can we do with this
intense, pulsed source of tens of MeV v's?
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- supernova-related cross-section studies
- coherent NC scattering
- neutrino oscillation



Supernova neutrino spectrum overlaps
very nicely with stopped 1 neutrino spectrum!

3.5% 10> MNeutrino spectra, 100ms After Bounce

Study
CC and NC
interactions
with various
nUCIQis

in few to 10's
S0 —sb—w of MeV range
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1. Understanding of core-collapse SN processes,
hucleosynthesis

2. Understanding of SN v detection processes



So far only '*C is the only heavy nucleus with v interaction
x-sections well (~10%) measured in the tens of MeV regime!

LSND Karmen

Phys. Rev. C 66 (2002) 015501 Phys. Lett. B 423 (1998) 15-20
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Core collapse dynamlcs

Understanding of electron capture is
vital for understanding the core
collapse mechanism

V. + A(Z,N) o A(Z+1,N-1) + e
BD V, cross-sections on nuclei
i up to A~100 needed
Neutrino opacities are also important:

- help to understand prompt vs delayed
*' | explosion mechanism

Liebendorfer et al., 2001

Supernova nucleosynthesis y :_,.,-r,';j

a5 el
Neutrino reactions affect the i ) “ﬂm'
distribution of SN-produced elements, ﬂ‘[ .fT*r'. Lt |
and may produce rare isotopes s EEy 'uIL R

Frohlich et al., Astrophys. J. 637 (2006) 415-426




Supernova nheutrino detection
Learn about core collapse

Ve Q H
and neutrino properties \ /
from flavor, energy, time \ /

structure of the burst

Require NC sensitivity for V..o since SN v
energies below CC threshold

Sensitivity to different flavors
and ability to tag interactions is key!
V VSV VSV



Supernova neutrino detection channels

Inverse beta decay: V+p-> € +n

- dominates for detectors with lots of free p (water, scint)
-V sensitivity; good E resolution; well known x-scn; ~

some tagging, poor pointing

Elastic scattering: few % of invpdk, but point! ™

CC interactions w/ nuclei: ,, | (NZ) - (N-1,Z+1) + e
- lower rates, but still useful, °

v_tagging useful V. +(N,Z) -~ (N+1,2-1) + ¢’
- x-scns not well known 2

NC interactions w/ nuclei: Vv +(AZ) - (A1,Z) + N4V,

- very important for physics, *
probes p and 1 flux V. +(AZ) - (AZ) +v,

- some rate in existing detectors; L, (AZ2) +Y
nhew ones proposed

- Xx-schs not well known ?




Supernova neutrino detectors, current & future

Detector Type Muass (kton) Lecatien Events at Stutus
8.5 kpc
Super-K Water 32 Japan 7000 Running as SKTII
SNO Heavy 1{D-0) Canada 400 Running until
water 1 4{H-0) 450 end of 2006

LVD Scintillator 1 Italy 200 Running
KamIL AND | Scintillator 1 Japan 300 Running

Borexino | Scintillatoc 0.3 Italy 100 200x
Baksan Scintillator 0.33 Russia 50 Running
Mini-BooNE | Scintillatoc 0.7 USA 200 Running
| AMANDA/ |Long stiing | 0.4/PMT Antarctica N/A Running

- IceCube

Tcarus LAr 24 Ttaly 200 200%
CLEAN Ne, Av 0.01 Canada, USA? 30 proposed
HALO Pb 0.1 Canada 40 proposed
SNO+ Scintillator 1 Canada 300 proposed
MOON po 0.03 ? 20 proposed
NOvA Scintillator 20 USA 4000 proposed
OMNIS Pb 2-3 USA? >1000 proposed
LANNDD LAx 70 USA? 6000 proposed
MEMPHYS Water 440 Europe >100,000 proposed
UNO Water 500 USA >100,000 proposed
Hyper-K Water 500 Japan >100,000 proposed
LENA Scintillator 60 Europe 18,000 proposed
HSD Scintillator 1030 USA 30,000 proposed




Most urgently needed supernova neutrino
CC and NC cross-section measurements:
(total and differential)

oxygen, argon, lead,
iron, (carbon)



So, how can we address these needs?

NuSNS (Neutrinos at the SNS) ——%’E N

A neutrino facility with capability to measure
multiple targets

VSNS site




NuSNS collaboration: 20 US institutions

System Lead
Project manager Efremenko (Tenn)
Bunker Cianciolo (ORNL)

Segmented Detector Hungerford (Houston)

Homogeneous Detector Stancu (Alabama)

VA Scattering Scholberg (Duke)
Veto Greife (Mines)
SNS & Backgrounds Blackmon (ORNL)
McLaughlin (NCSU)
Theory
Hix (ORNL)

http://www.phy.ornl.gov/nusns



Spot identified 20 m from the target




Conventional ~10 ton detectors w/ few MeV thresholds:
-liquid target + PMTs }changeable
-strawtube gas tracker+ target sheets
-cosmic ray veto

targets

Concrete

+ steel
bunker,

1 m ceiling,
0.5 m walls;
inher
4.5x4.5x6.5 m®

| - volume

Aims to be 'user facility’




The Homogeneous Detector: liquid targets

3.5m x 3.5m x 3.5m
steel vessel

(43 m3, 15.5 m?
fiducial volume)

600 8" PMTs

(41% coverage)

Well known
technology!

Potential targets
* 1300 events/yr v_+'2C - 2N+e (mineral oil)

* 450 events/yr v _+'°0 - '°F+e- (water)
* 1000 events/yr v +?H - p+n+ v, (heavy water)




The Segmented Detector: metallic targets

Thin corrugated metal sheet
(e.g. 0.75 mm-thick iron)
Total mass ~14 tons,
10 tons fiducial

Detector: 1.4x10* gas

proportional counters
(straw tube),

3m long x 16mm diameter

corrugated
metal target

straw
tube

anode
wire

- 3D position by cell ID & charge division
- PID and energy by track reconstruction

Potential targets
* 1100 events/yr v +Fe - Co+e

* 1100 events/yr v +Al - Si+e-
* 4900 events/yr v +Pb - Bit+e




Cosm ic ray Veto wave-length shifting fibers

read out by multi-anode PMT

' ¥y

Pt

1.5cmiron——,.
/V
extruded scintillator

]
a F it

Efficiencies:
muons: ~99%
gamma: 0.005%
neutron: 0.07%

Geant4 simulation & prototype
studies underway for all subdetectors



Another physics topic requiring a
different detector technology:

Coherent neutral current neutrino-nucleus
elastic scattering

V+A S V+A

v v
A neutrino smacks a nucleus \/

via exchange of a Z,
and the nucleus recoils

A A

- Neutral current, so flavor-blind
- Coherent up to E ~ 50 MeV

- Important in SN processes & detection




This process has a cross-section easily
calculable in the Standard Model:

A. Drukier & L. Stodolsky, PRD 30, 2295 (1984)
Horowitz et al. astro-ph/0302071

- 2 2
A 2 (N—(1—4sin"0_)Z)
T~ 9 K (1+cos0) v F(Q)
d 471t 4
And the cross-section is large!
~100 times inverse 3 dk in few-50 MeV range
kew -1 5*-1 Nuclear recoil energy Never before
'EK . spectrum for 30 MeV v observed:
gk y ) huge rates
i ax recoi .
o / energy is 2E /M but ref:ml
25 107 (48 keV for Ar) energies

n.01  0.02 0.0z n.04 Hey are tiny!



Detector technologies that might work: (WIMPs)

Germanium

- 10 keV threshold achievable, good recoil selection
- large target masses may be possible
- bg requirements less stringent than for WIMPs



Integrated yield for various targets vs threshold

Events over threshold per yr per ton
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Lighter nucleus O expect fewer
interactions, but more at higher energy



So, the 'sanitized’ rates look good...
even with a few kg scale detector,
one might make the first detection

What physics could be learned?
K. Scholberg, Phys. Rev D 73 (2006) 033005
Basically, any deviation from SM x-sch is interesting...
- Weak mixing angle:
could measure to ~5%
- Non Standard Interactions (NSI) of neutrinos:
could significantly improve constraints
- Neutrino magnetic moment:
hard, but maybe doable



Example: sensitivity to NSI parameters
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With ~100 kg-yr,
can significantly
improve
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NSI parameters



So, for all these physics topics,
detectors are feasible, interaction rates good;

we still need to fully understand background:

n's, e's, y's, instrumental...

i . - : subject
Radlo:actlwty (detector & ambient) 3 ;) iceq
- Cosmic ray related beam
- reduced by veto & bunker rejection

factor

-4_40-3
- Beam-related neutrons (107-10%)



Background neutron simulations by
SNS neutronics group
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For coherent NC scattering: need neutron flux
in few MeV rTge, both energy & time dependence
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Background measurements 2006

— 4

Desk/PC

rack =

— H

60 tons of steel installed ,
2 stacks of shield block 4 detector stations:
52”x 52” x 60 high 5” liquid scintillator



Measurements will continue as beam
power ramps up



Summary

The SNS at ORNL will provide a high-intensity
stopped-pion neutrinos In the fews tens of MeV range

This is ideal for studies of supernova-relevant
neutrino-nucleus interactions!

The Nu-SNS collaboration plans homogeneous
and segmented detectors 20 m from the target:
O,C,d, Pb, Fe

Also: coherent NC elastic scattering in low threshold
detector may be possible

Background and prototype studies underway at the SNS



